The Impact of Residential Broadband Traffic on Japanese ISP Backbones
-- SRCCS Workshop on Internet Measurement, Modeling, and Analysis --

Kenjiro Cho (IIJ / WIDE)
Kensuke Fukuda (NTT / WIDE)
Hiroshi Esaki (U.Tokyo / WIDE)
Akira Kato (U.Tokyo / WIDE)

major findings in our study

- our data is considered to cover 41% of total Japanese traffic
 - total RBB traffic in Japan is estimated to be about 250Gbps
- 70% of RBB traffic is constant, peak in the evening hours
- RBB traffic is much larger than office traffic, so backbone traffic is dominated by RBB traffic
- traffic volume exchanged via private peering is comparable with volume exchanged via major IXes
- within external traffic, international traffic is about 23% for inbound and about 17% for outbound
- regional RBB traffic is roughly proportional to regional population
introduction

- rapidly growing residential broadband access
 - low-cost high-speed services, especially in Korea and Japan
- total RBB subscribers in Japan as of Feb 2004: 14.5 million
 - DSL: 11 million, CATV: 2.5 million, FTTH: 1 million

unprecedented traffic increase in backbone

- traffic growth at the major Japanese IXes
 - how much is contributed by residential broadband traffic?
background

- concerns about rapid growth of RBB traffic
 - backbone technologies will not keep up with RBB traffic
 - ISPs cannot invest in backbone simply for low-profit RBB
- ISPs and policy makers need to understand the effects of RBB
 - although most ISPs internally measure their traffic
 - data are seldom made available to others
 - measurement methods and policies differ from ISP to ISP
- to identify the macro-level impact of RBB traffic on ISP backbones
 - an unofficial study group was formed with specialists
 - members from 7 major Japanese ISPs and government
- goals: traffic measurement across multiple ISPs, to identify
 - ratio of RBB traffic to other traffic
 - changes in traffic patterns
 - regional differences

traffic data collection across multiple ISPs

- requirements
 - find a common data set for all participating ISPs
 - focus on operational aspects
 - workload and investment for ISPs should not be high
 - data should be coarse not to reveal sensitive information but meaningful enough to analyze traffic
- challenges: mostly political or social, not technical

- we found that most ISPs use MRTG/RRDtool to monitor SNMP inOctet/outOctet of almost all routers in their service networks
 - if we can classify traffic into a common set, ISPs can provide aggregated traffic info
traffic groups at ISP boundary for data collection

- focus on traffic crossing ISP boundaries (customer and external)
 - customer traffic is summable
 - external traffic could have double-counts (but small in our results since participating ISPs are peering with each other)

- 5 traffic groups selected by existing operational practice of the ISPs
 - it is not possible to draw a strict line on global Internet
 - e.g., residential/business, domestic/international

<table>
<thead>
<tr>
<th>traffic group</th>
<th>description</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A1) RBB customers</td>
<td>residential broadband customer lines</td>
<td>includes small business customers using RBB</td>
</tr>
<tr>
<td>(A2) non-RBB customers</td>
<td>includes leased lines, data centers, dialup lines</td>
<td>may include RBB customers behind leased lines</td>
</tr>
<tr>
<td>(B1) external 6IXes</td>
<td>links for 6 major IXes (JP-NAP/JPX/NSPIX in Tokyo/Osaka)</td>
<td></td>
</tr>
<tr>
<td>(B2) external domestic</td>
<td>external domestic links other than the 6IXes (regional IXes, private peering, transit)</td>
<td>domestic, both link-ends in Japan, includes domestic peering with global ASes</td>
</tr>
<tr>
<td>(B3) external international</td>
<td>external international links</td>
<td></td>
</tr>
<tr>
<td>(C) prefectural</td>
<td>RBB links divided by 47 prefectures in Japan</td>
<td>prefectural links from 2 RBB carriers</td>
</tr>
</tbody>
</table>
methodology

- month-long traffic logs for the 5 traffic groups with 2-hour resolution
 - MRTG’s resolution for monthly log
- a script to read and aggregate a list of MRTG/RRDtool logs
 - each ISP creates log lists and makes aggregated logs by themselves without disclosing details
- another script to make graphs from the results using RRDtool
- biggest workload for ISP
 - creating lists by classifying large number of per-interface logs
 - some ISPs have more than 100,000 logs!
 - maintaining the lists
 - frequent planned and unplanned configuration changes

results

- 2-hour resolution traffic logs for September and October 2004
 - by re-aggregating logs provided by 7 ISPs
- in weekly analysis, holidays are excluded
 - holiday traffic is closer to weekend traffic
- IN/OUT from ISPs’ view
RBB customer weekly traffic
in September 2004

- DSL/CATV/FTTH customer traffic of the 7 ISPs
 - inbound and outbound are almost equal
 - 100Gbps on average!
 - 70Gbps is constant, probably due to p2p applications
 - daily fluctuations: peak from 21:00 to 23:00

non-RBB customer weekly traffic
in September 2004

- leased lines/data center/other customers
 - home user traffic is still dominant (by peak hours)
 - because leased lines include 2nd/3rd level ISPs
 - larger office hour traffic than RBB customer traffic
- only 4 ISPs provided data for this group
 - some ISPs have too many routers, historically mixed up settings
ABILENE weekly traffic
in October 2004

- an example of well-known academic or business usage pattern
 - peak hours around noon
 - weekdays have more traffic than weekend
 - our results considerably deviate from traditional usage pattern!

weekly external traffic to/from 6 major IXes
in September 2004

- IX traffic is also strongly affected by residential traffic
weekly other domestic external traffic
in September 2004

- private peering/transit, regional IXes (mainly private peering)
 - traffic volume and pattern are similar to IX traffic

weekly international external traffic
in September 2004

- international traffic
 - inbound much larger than outbound
 - traditional content downloading seems still dominant
prefectural traffic

- similar temporal traffic pattern across different prefectures
 - e.g., peak in evening, 70% is constant, regardless the volume
 - one metropolitan prefecture (with larger office hour traffic)

- one rural prefecture

prefectural population and traffic

- a scatter plot of population and traffic volume
 - traffic is roughly linear to population!
 - similar result with the number of Internet users
scaling property of prefectural traffic volume

- cumulative distribution of prefectural traffic on a log-log scale
 - power law distribution with a cutoff point at 700Mbps
 - no typical size of prefectural traffic volume!
- sub-plot: cumulative distribution of prefectural population
 - power law is directly derived from population distribution!

looking at numbers

- customer traffic and external traffic
- monthly average in bits/second
 - September and October data
average rates of aggregated customer traffic

- only 4 ISPs provided (A2), so when estimated by these 4 ISPs
 - \(\frac{(A1)}{(A1 + A2)} = 65\% \) for inbound, 67\% for outbound

<table>
<thead>
<tr>
<th></th>
<th>(A1) customer-RBB (7 ISPs)</th>
<th>(A2) customer-non-RBB (4 ISPs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inbound</td>
<td>outbound</td>
</tr>
<tr>
<td>Sep</td>
<td>98.1G</td>
<td>111.8G</td>
</tr>
<tr>
<td>Oct</td>
<td>108.3G</td>
<td>124.9G</td>
</tr>
</tbody>
</table>

average rates of aggregated external traffic

- (B2), mainly private peering, exceeds (B1), major IXes
 - a large amount of traffic is exchanged via private peering
 - IX data may not be a good index of nation-wide traffic volume
 - ratio of (B2) could be overestimated, since private peering is usually only between large ISPs

<table>
<thead>
<tr>
<th></th>
<th>(B1) ext-6ix (7 ISPs)</th>
<th>(B2) ext-dom (7 ISPs)</th>
<th>(B3) ext-intl (7 ISPs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in</td>
<td>out</td>
<td>in</td>
</tr>
<tr>
<td>Sep</td>
<td>35.9G</td>
<td>39.9G</td>
<td>48.2G</td>
</tr>
<tr>
<td>Oct</td>
<td>36.3G</td>
<td>31.8G</td>
<td>51.1G</td>
</tr>
</tbody>
</table>
average rates of total customer and total external

- if we assume all customer traffic is external (no ISP internal traffic)
 - inbound of (A) should be close to outbound of (B)
 - outbound of (A) should be close to inbound of (B)
- ISP internal traffic can be derived from the differences
- but, in our data, (A2) is from only 4ISP

<table>
<thead>
<tr>
<th></th>
<th>(A) customer (A1+A2)</th>
<th>(B) external (B1+B2+B3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inbound</td>
<td>outbound</td>
</tr>
<tr>
<td>Sep</td>
<td>112.1G</td>
<td>125.4G</td>
</tr>
<tr>
<td>Oct</td>
<td>123.3G</td>
<td>139.8G</td>
</tr>
</tbody>
</table>

IX traffic

- (B1) compared with one obtained directly from the IXes
 - our share is 41% of the total IX traffic
- if we assume this is the traffic share of the 7 ISPs, the total RBB traffic in Japan is about 250Gbps

<table>
<thead>
<tr>
<th></th>
<th>(B1) ext-6ix</th>
<th>traffic observed by IXes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>outbound</td>
<td>inbound</td>
</tr>
<tr>
<td>Sep</td>
<td>30.9G</td>
<td>74.5G</td>
</tr>
<tr>
<td>Oct</td>
<td>31.8G</td>
<td>77.1G</td>
</tr>
</tbody>
</table>
distribution of per-customer traffic in one ISP

- one of the ISPs provided per-customer traffic info for October 2004
 - by sampled NetFlow and matching customer ID with assigned IP addresses
- we used average daily traffic volume per customer for analysis
- results are consistent with the aggregated traffic

cumulative distribution of daily traffic per user

- all prefectures (left), metropolitan (middle) and rural prefecture (right)
 - complementary cumulative distribution on a log-log scale
 - distribution similar in all prefectures, differences only in tail length
 - knee point: 4% of customers use more than 2.5GB/day (230kb/s)
 - outbound is dominant for most customers but not for heavy hitters
correlation of inbound and outbound per customer

- high density cluster below and parallel to the unity line
 - outbound is 10 times larger than inbound
- in higher volume region, another cluster around the unity line
 - file-sharing over FTTH?

cumulative distribution of heavy hitters

- cumulative distribution of traffic volume of all of the prefectures
 - with heavy hitters in decreasing order of volume
- top N% of heavy hitters use X% of the total traffic
 - e.g., top 4% uses 75% of total inbound traffic, 60% of the outbound
discussions

- it is essential for ISPs to prepare for the future to accommodate innovations brought by empowered end-users
- RBB traffic accounts for 2/3 of ISP backbone traffic
 - a significant impact on pricing and cost structures of ISP business
- properties of RBB traffic differ considerably from academic or office traffic often seen in literature
 - research results from academic networks may no longer apply to commercial traffic
- inbound/outbound rates are roughly equal throughout our data sets
 - it affects the design of asymmetric access technologies
- a large amount of traffic is exchanged by private peering
 - IXes data may not be a good index of nation-wide traffic volume
- traffic volume is roughly proportional to regional population
 - it affects the design of capacity planning for the future Internet

conclusion

- our study to understand residential broadband traffic in Japan
 - cooperation with major ISPs and government
- details on a paper (ACM SIGCOMM CCR special issue)

- future work
 - we will continue collecting aggregated traffic logs from ISPs
 - plans to do more detailed analysis of RBB traffic by sampling

- acknowledgments
 - support and assistance with data collection
 - IIJ, Japan Telecom, K-Opticom, KDDI, NTT Communications, POWEREDCOM, SOFTBANK BB
 - support in coordinating our study
 - Ministry of Internal Affairs and Communications of Japan